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Simple plate spreading
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Blackman and Kendall
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2.5D spreading center:
Flow rift perpendicular

Flow pattern controlled
by:

e Spreading rate

e Mantle viscosity

e Melt production
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LPO anisotropy controlled
by:

e Spreading rate

e Mantle viscosity

 Mineralogy

* |ncreases off-axis
e Fast SW polarisation parallel

. Shear-wave splitting:
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Fig. 3. Shear-wawe splitting across the MELT array. Dots dencte the pesition of the O85s, and solid

lines indicate the orientation of the fast directicn &, with the line length proportional to the delay time &
between fast and slow shear waves (Table 1}. The rise axis is plotted as a sclid line. Arrows indicate the
magnitude and direction of absolute plate motion (20); the directions of absclute plate motion {20} and
relative plate motion (72) are identical to within & few degrees in this region
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Simple plate spreading

SKS Splitting at the EPR
(Wolfe and Silver, 1998;
Harmon et al. 2004))

2.5D spreading center:
Flow rift perpendicular

Model predicts rift-
perpendicular
orientation off-axis
(large ot).
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SKS splitting in the MER
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 EPR anisotropy is very different from MER
anisotropy

— Continental rift versus oceanic spreading center?
— Spreading rates?

e Difficult to measure SKS splitting at MORs —
instead use source-side SWS.
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Source side splitting
(Nowacki et al., Nature, 2010)

Splitting from UM Additional splitting from UM
: A = 60-85° nisotropy beneath receiver
anisotropy below source anisotropy bene
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Events and Stations
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NWK methodology

Rigorous data selection and quality control:

e Receiver anisotropy must be simple and well characterised.

e Where possible use data from similar azimuths for both S and SKS.
 High-quality measurements, low error, clear signal and anisotropy.

e [nferred source polarisation must agree with CMT solution for the
earthquake.
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Results
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East Pacific Rise - source-side splitting
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Best sampled segment

Results agree with
Wolfe and Solomon
(1998) and Harmon et
al. (2004), but split
magnitude is larger

Ridge parallel (>50km)
— dt=1-3s

Transforms much
more complicated
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id Atlantic Ridge - source-side splitting

Limited in latitude (-40 to
15)

More complicated than
EPR

Ridge parallel (e.g., -
30degs); smaller than
EPR

Variations along
transforms; magnitudes
higher near ridge
segments
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Gakkel Ridge - source-side splitting

1s

stack

SKS from other studies

null

Only 10 good results
Plus 10 good nulls

Smallest amounts of
splitting

Gakkel is mostly ridge
parallel

Some evidence of
asymmetry

South West Indian Ridge
is similarly complicated
(oblique spreading)
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EPR S-wave vs SKS splitting -
modelling
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Modelling B&K-02: S
(red lines); SKS (blue
lines); note raypath incl
and Az are different

B&K-02 predictions
agree with SKS results
(W&S - 98 and Harmon
et al. - 04)

S-splits are much larger
— solution: Tl anisotropy
due to melt alignment?
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Stress driven melt segregation
- most effective at flanks (marginal LAB)

(e)
strain
| rate

distance
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Melt and the LAB

o [Melt

_Staep LAB: [
splitting dominated by meﬂ O |
Vsv > VsH SN

Slow spreading — steep sides

GAKKEL- MER

SKS very sensitive to melt
anisotropy

MER much more melt
production

Along strike flow?

shallow LAB:

splitting dominated by LPO
Vsu > Vsv

e Fast spreading — subhoriz LAB
e EPR

e SKS not sensitive to melt

e Sand surface waves are

sensitive to melt anisotropy

e Melt enhances LAB
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Mechanisms for MER anisotropy:

e Large-scale flow beneath
eastern Africa associated
with super-swell.

e Melt focused at plate
boundaries - leads to
oriented vertical pockets of
melt.

fisting fabric

Aligned
olivine crystaks

e Contribution from pan-
African fabric in lithosphere
away from rift.

Kendall et al., 2006

Bl University of
BRISTOL



Conclusions

Source-side shear-wave splitting provides global comparison of
MOR anisotropy

Off-axis splitting is generally ridge perpendicular (Gakkel is
perhaps exception; Reykjanes Ridge? — along strike flow?)

Delay times increase off axis; correlation with spreading rate
More complicated near transform faults (patterns?)

Melt needed to explain discrepancies between S and SKS
splitting (EPR)

Melt focused at marginal LAB

Melt hypothesis compatible with surface-wave radial
anisotropy (Nettles and Dziewonski 2008) and SRFs (Rychert
and Shearer, 2009; Kawakatsu et al., 2009)
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